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DESIGN OF A HEAT PIPE WITH SEPARATE CHANNELS FOR VAPOR AND LIQUID 

Yu. E. Dolgirev, Yu. F. Gerasimov, Yu. F. Maidanik, 
and V. M. Kiseev 

UDC 621.565.58~088.8) 

The design of a limited rate heat pipe with individual channels for vapor and 
liquid is discussed. 

One of the efficient structures for low-temperature heat pipes to transmit heat in the 
direction of the gravity field is the heat pipe with separate channels for vapor and liquid- 
the antigravity heat pipe (AGHP) [i, 2]. The complexity of the physical processes occurring 
in this type of heat pipe has been an obstacle to a rigorous analytical description r its 
operation. 

In this paper we describe the calculation of the heat-transfer capability and dr 
tion of the conditions of operation of an AGHP operating in the evaporation regime (Fig. i). 
The input data for the design are the "height" of the heat pipe, its geometrical dimensions, 
the characteristics of the capillary-porous structure, and also the temperatures of the 
vapor and condensate being supplied. In the calculation we define the maximum allowable 
heat-flux surface density in the evaporator and the wall temperature of the compensating 
cavity, and we verify the condition for boiling of liquid in the cavity. 

Under the limiting heat load the capillary heat is equal to the sum of the pressure 
drops in the individual sections of the heat pipe. The basic equation for a heat pipe of 
this construction has the form 

Q 128~"Lve Qz 8A/vc 128~'Lle a ~' _ R2 
nlP~e,Zve + ~ZlZp"d%e +Q Mp'd~ +Q -2~(I"-- + . 4 ~ r  6 2 M p  tve[ R~ 

(1) 
+ 2 In R~ + ~ w ~  ~a__~. i ~ ~ cos o 

" Rz ~ ( R ~ _ _ R a _ _ d v e ) n v e  ! + p ' g L s i n ~ =  

The first term on the left-hand side of Eq. (I) is the pressure drop in the vapo:~ chan- 
nels of the evaporator; the second term is the drop in the main vapor channel; the third 
term is the drop in the liquid channel; the fourth term is the friction loss during motion 
of liquid along the support wall of the wick; the fifth term is the same for the motion of 
the liquid through the contractions between the vapor channels of the evaporator; and the 
sixth term is the loss in the wall layer of the evaporator. The complex geometry of the last 
two sections in this design is approximated by a simpler structure. The wick section from 
Ra to Ra +dve between the vapor-emlssion channels is approximated by an annular layer with 
the same radii. Contraction of the section carrying liquid is taken into account by an 
appropriate coefficient (in this case equal to 2), which is obtained by optimizing the number 
of vapor-emission channels. The wall section for each vapor-emission channel is approxi- 
mated by a rectangular section with an average length equal to dye and an average width of 
R3 -- Ra -- dve, equal to the thickness of the wall layer. The quantity Hr~/a is the perme- 
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I I 

Fig. i. Schematic of 
the heat pipe. 

ability coefficient. The seventh term is the pressure drop due to the hydrostatic column of 
liquid. 

In setting up equation (1) we allowed for the fact that the most intense evaporation 
occurs from the surface of the vapor-emission channels, located close to the outside wall of 
the evaporator. 

During operation of the heat pipe with any heat-transfer agent, over a wide range of 
power transfer, including the limiting values, laminar flow conditions are achieved for the 
heat-transfer agent in all the sections, i.e., the condition 

4Q 
Re = --<Reef, #l~dn 

is satisfied; here d, n, and n are the diameter, the number of parallel channels, and the 
viscosity of the heat-transfer agent at a given section, and Recr is the critical Reynolds 
number, equal to 2300. 

An exception is the main vapor channel, in which turbulent vapor flow conditions occur 
because of its small diameter. The vapor-channel diameter in an AGHP is limited by the 
condition that the compensation cavity volume should be equal to the sum of the volumes of 
the vapor channel and the condenser. The resistance coefficient is calculated from experi- 
mental data. 

In contracted form, Eq. (i) can be written as 

~ cos 0 (2)  
~ ' AQ 2+BQ+ a DQ+p'gLsin~= rp 

where A, B, and D are, respectively, parametric groups in Q2 and Q. From Eq. (2) we can 
determine Q: 

~/ r (~  A De_ ) ~acosOZ+ A~ p'gL sin ~A (B ~ )  + �9 

The heat flux transmitted by the pipe depends on the radius of the pores. It will be 
a maximum for a specific optimal pore radius. 

By applying the usual procedure for finding an extremum of 3Q/3rp, we can determine the 
optimal pore radius top t corresponding to a given pipe geometry, its operating height, and a 
given heat-transfer agent. An accurate value of ropt is calculated by a computer. The char- 
acteristic form of curves calculated from Eq. (3), i.e., the dependence of transferred power 
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Fig. 2. Characteristic shape of curves calculated from Eq. 
(3), ~ > ~2. 

Fig. 3. Differential curve for distribution of pore volume o 
with respect to radius: rp is the radius of the pores, A. 

on pore radius for wicks with various porosities, is presented in Fig. 2, from which one can 
see that an increase in wick porosity leads to an increase in Q, which leads, in turn, to an 
increase in the friction loss in the outer circuit, this, correspondingly, leading to a 
reduction in the optimal pore radius. The values of Q obtained were calculated for an ideal 
wick, in which all the pores have the same radius, equal to the optimal value. In actual 
porous bodies there is a distribution of pore radius. Each pore radius has its own F erme- 
ability, a dynamic quantity which determines a set of pores with a range of variation from a 
given radius downward. It can be determined as follows: 

m m 
K ~ =  K ~ =  " ~,  (4) 

i = 1  i = 1  

where Ki, A~.l are the permeability and porosity of the wick for pores of radius from rpi_ ~ 
to rpi. Equation (4) was obtained from the Poiseuille and Darcy formulas, taking into ac- 
count that the sinuosity of the capillaries is 2 [3]. 

The maximum heat flux of a pipe with an actual capillary-porous structure corresponds 
~o the largest term in a series , each of which is calculated from the equation 

Qm = V(2-AB -F~D) z~c~ A~ m p'gLsin~A (B~_~+2_~mD) . (5) 

The maximum energy-flux density at the external surface of the evaporator is q = Q/S. 

For start-up and operation of an AGHP with a given heat-transfer agent and given temper- 
ature level, a specific temperature drop at the wick support wall, as well as a corresponding 
pressure drop from the vapor channel and part of the condenser to the compensation cavity, 
which must be overcome by the liquid and therefore by the wick feed, is necessary. I:~ addi- 
tion, the liquid temperature and pressure at the wall of the compensation cavity must corre- 
spond to a stable state, i.e., the liquid in this region should not be superheated. If the 
liquid is in a metastable state, then it may become super-boiled in the compensation 4=avity. 
This perturbs the normal wick supply, causes an increase in the vapor temperature, and can 
lead to the operation of the heat pipe being shut down. 

The temperature drop in the wick support wall depends on the wall thickness, the effec- 
tive thermal conductivity of the wick, the specific heat of the liquid, the vapor tempera- 
ture, the temperature of the liquid arriving in the compensation cavity, and the liquLd flow 
density in the wick. 

The temperature drop at the wick wall can be determined as follows. First we find the 
temperature distribution in the wick under given boundary conditions, and then the tempera- 
ture distribution in the liquid occupying the compensation cavity. By matching the solution 
at the point R~, we can find the liquid temperature, equal to the temperature of the wick 
housing at the compensation cavity wall. 
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The differential equation for energy transfer in a capillary-porous structure filled 
with liquid which flows counter to the heat flux has the form (in a cylindrical coordinate 
system) [4] 

where s = ~ e ~ . 

With the boundary conditions 

d*t 1 ( ~) dt 
dr - - ~ { -  r 1 - -  :~-r = 0, (6 )  

the solution of Eq. 

r=Ri t=t,; r=R2 t=tv 

(6) can be written in the form 

t = q + (_tv-- t,) (r ' - -  R~) 
8 R 2 - -  R l 

The differential equation for the energy transfer in the liquid filling the compensation 
cavity has the analogous form 

(7) 

I 
where s :  = QCp/2~ILve~'. 

The solution of Eq. 

d2t dt 
dr-y + 1--(1 --~,) =o,  (s) 

(8) with boundary conditions 

has the form 

r = 0  t - - t l ;  r--:-Ri ~,dt ~ d t  
dr dr 

t ~ tz + ( t v - -  tt) R~r ~' (9) 

From Eq. ( 7 )  a n d  ( 9 )  w i t h  r = R~ we c a n  f i n d  t h e  t e m p e r a t u r e  t l  a t  t h e  w a l l :  

�9 

The temperature drop at the wick support wall for the given operating parameters is At = t v -- 
tz. 

The main condition for operation of an AGHP is the no-boiling condition for the liquid 
in the compensation cavity (or, more accurately, at the interface between the liquid-wick 
regions). This condition may be written as follows: 

dP (t v- q) >~ EAP, (1o) 
dT 

where ZAP = AP + AP + AP~c + AP is the sum of the pressure losses in the outer AGHP cir- 
ve vc g 

cult; dP/dT = Ip'p"/Tv(P' -- p") is the tangent of the angle of slope of the saturation line 
for the heat-transfer agent at a given temperature level of the heat pipe. 

It can be seen from Eq. (i0) that operation of the AGHP depends on the temperature 
level at which it operates, on the curvature of the saturation line of the given heat-trans- 
fer agent, and also on the hydraulic resistance of the outer circuit. 

Table i shows the results of calculations carried out for a single heat pipe, charged 
with various heat-transfer agents, and with the following geometric dimensions: Lye = 7,10 

= d l c  m-2; dve = 2.10_3 m; nve = 22; Lye = 0.75 m; dvc = 5.8o10 -3 m; Llc 1.0 m; = 3.5"i0 -~ m; 

L = 0.9 m; RI = 4,10 -3 m; R2 = ii'i0 -a m; Ra = 14"10 -3 m. 

A wick with H = 60% was made of electrolytic nickel powder. The differential curve for 
the distribution of pore volume with respect to radius was taken on a mercury porometer and 
is shown for this wick in Fig. 3. The total permeability of this wick, computed from Eq. 
(4), is K = 1.26-i0 -14 m 2. 
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TABLE i. Results of Heat-Pipe Calculation 

c~ 

z ~  
Acetone 

Fmon-ll 

Ammoni; 

Oper. param_, l Results of calculations 
/ ideal w ick - -  actual wick 

~9 u ~ ~ / r~ q. I o.-,,  rp, o. 10- ', condit ion 
~: ~> ~ [ gm W/m "z gm W/m 2 (10) 

38 

4O 

35 

25 

25 

33 

I, 84 
1,66 
1,48 

3,60 
2,00 
1,16 

3,12 
2,68 
2,28 

I1,0l 
9,84 
8,53 

7,65 
4,24 
2,59 

61,46 
53,20 
45,05 

0,93 
0,91 
0,90 

0,95 
0,90 
0,86 

0,95 
0,93 
0,91 

4,02 Fulfilled 
3,70 
3,38 Not fulfilled 

t ,49 Fulfilled 

1,21 'Not ful"filled 0,94 

13,7812,0812,93 I Futfiued 

I Exp. 
dat_aa 

q.lO -~ ,  

wm/_~ 

3,89 
3,30 

1,28 
1,08 
1,02 

Table i also presents experimental data with acetone and Freon-ll, which show good agree- 
ment with the results of calculation. 

The liquid flux density with acetone and Freon-ll at ~ ~ 90 ~ and the given temperatures 
does not provide the required temperature drop at the wick support wall, i.e., there may be 
boiling of liquid in the Compensation cavity. In this case one observes experimentally an 
increase in the vapor temperature and a shift in the working point upward along the ~atura- 
tion line to the required temperature level. 

NOTATION 

Lve, dye, nve, length, diameter, and number of the vapor-emission channels of the 

evaporator; Lvc, dvc , length and diameter of the main vapor channel; LZc, dlc , length and 

diameter of the liquid channel; L, heat-transfer length; S, outer surface area of the evapor- 
ator; g, acceleration of gravity; ~, angle between the heat-pipe axis and the horizontal; ~, 
a shape coefficient for a capillary (for a cylinder ~ = 2); o, surface-tension coeffizient; 
0, wetting angle; r_, radius of the pores; ropt, optimal pore radius; a, coefficient for P 
proportionality of permeability; ~, porosity; l, latent heat of vaporization; Q~ heat 
flux; P, o', Cp', %', density, viscosity, specific heat, and thermal conductivity of 
the liquid; p", n", density and viscosity of the vapor; A, resistance coefficient, A == 
0.066; %e' effective thermal conductivity of the wick saturated with liquid; t, current tem- 
perature; r, coordinate; P, pressure; V, pore volume; Km, dynamic permeability at a given 
pore radius r 
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